[terative Linear Solvers in a 2D
Radiation-Hydrodynamics Code:
Methods and Performance®

Chuck Baldwin Peter N. Brown Robert Falgout Jim Jones'
Frank Grazianit

December 8, 1998

Abstract

Computer codes containing both hydrodynamics and radiation play a central role
in simulating both astrophysical and inertial confinement fusion (ICF) phenomena. A
crucial aspect of these codes is that they require an implicit solution of the radiation
diffusion equations. We present in this paper the results of a comparison of five differ-
ent linear solvers on a range of complex radiation and radiation-hydrodynamics prob-
lems. The linear solvers used are diagonally scaled conjugate gradient, GMRES with
incomplete LU preconditioning, conjugate gradient with incomplete Cholesky precondi-
tioning, multigrid, and multigrid-preconditioned conjugate gradient. These problems
involve shock propagation, opacities varying over 5-6 orders of magnitude, tabular
equations of state, and dynamic ALE (Arbitrary Lagrangian Eulerian) meshes. We
perform a problem size scalability study by comparing linear solver performance over a
wide range of problem sizes from 1000 to 100,000 zones. The fundamental question we
address in this paper is: is it more efficient to invert the matrix in many inexpensive
steps (like diagonally scaled conjugate gradient) or in fewer expensive steps (like multi-
grid)? In addition, what is the answer to this question as a function of problem size
and is the answer problem dependent? We find that the diagonally scaled conjugate
gradient method performs poorly with the growth of problem size, increasing in both
iteration count and overall CPU time with the size of the problem and also increasing
for larger time steps. For all problems considered, the multigrid algorithms scale almost
perfectly (i.e. the iteration count is approximately independent of problem size and
problem time step). For pure radiation flow problems (i.e. no hydrodynamics), we see
speedups in CPU time of factors of ~15-30 for the largest problems, when comparing
the multigrid solvers relative to diagonal scaled conjugate gradient. For the incomplete

*This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Liver-
more National Laboratory under contract W-7405-Eng-48.

tCenter for Applied Scientific Computing, L-561, Lawrence Livermore National Laboratory, Livermore,
California 94550.

iLow Energy Density Physics, L-170, Lawrence Livermore National Laboratory, Livermore, California
94550.

Linear Solver Comparison December 8, 1998 2

factorization preconditioners, we see a weak dependence of iteration count on problem
size. The speedups observed for pure radiation flow are typically on the order of 10
relative to diagonal scaled conjugate gradient. For radiation hydrodynamics problems,
we again see multigrid scaling perfectly. However, for the problems considered, we see
speedups relative to diagonal scaled conjugate gradient of no more than =10, with in-
complete Cholesky in fact either equaling or outperforming multigrid. We trace these
observations to the time step control and the feature of ALE to relax distorted zones.

1 Introduction

Computer codes containing both hydrodynamics and radiation play a central role in simulat-
ing both astrophysical and inertial confinement fusion (ICF) phenomena [1-2]. With increas-
ing experimental data coming from observational astronomy [3] and laser experiments [4],
there is a need for performing spatially and temporally resolved numerical calculations of such
physical processes as convective instabilities in a supernova or radiatively driven Richtmeyer-
Meshov instabilities in an ICF capsule. These problems require accurately simulating not
only fluid motion (including shock propagation) but also the transport of radiation energy
density in both optically thick and thin materials in as computationally expedient a method
as possible.

Typically, a multiphysics code also means multiple time scales, and radiation-hydrodynamics
(RHD) codes are no exception. For problems of interest in this paper, namely radiation
transport coupled to shock propagation, the hydrodynamic time scale is determined by the
speed of sound and a “zone width,” and the radiation time scale is determined by 1/(kpc),
where k is the frequency dependent opacity, p is the material density, and c is the speed of
light. The need to know transient shock behavior implies that an explicit formulation of the
hydrodynamics equations is required. An RHD code can certainly run at the smallest time
step as determined by the radiation Courant condition

cAt < 1
kpAz? 2’

where At is the time step and Ax is the zone width, but this can be extremely inefficient
causing the code to have to run millions of cycles in order to capture a radiatively driven
implosion. The other option is to run at the largest time step possible within the limits of
stability and accuracy. This means running at time steps much larger than the time step
demanded by the radiation Courant condition. Therefore, it is imperative from a stability
standpoint that the radiation be run implicitly. It is this fact that necessitates the use of
matrix solvers.

Performing spatially resolved numerical calculations of an ICF implosion can require
hundreds of thousands to millions of zones in 2D and millions to tens of millions of zones
in 3D. In addition, astrophysical and ICF applications can give rise to a wide range of
density and temperature scales coupled to complicated flows that imply a highly anisotropic
distribution of opacities covering a wide range of values (typically five orders of magnitude
across an interface). Consequently, the matrices that need to be inverted in a real world
application of an RHD code are not only extremely large, but are difficult to invert due

Linear Solver Comparison December 8, 1998 3

primarily to the wide range in values of the matrix entries. The purpose of this paper is to
compare and contrast the performance of five linear iterative solvers over a wide range of
RHD problems which cover a wide range of zone counts. Typically, we will consider small
(~1000 zones), medium (/210,000 zones), and large (/100,000 zones) problems. The results
presented in this paper are for a DEC-Alpha computer. All calculations are run serially
although comments are made concerning future work on multiple processor platforms.

The five linear solvers chosen are:

1. diagonally scaled preconditioned conjugate gradient (DSCG) [15],

2. generalized minimal residual method with incomplete LU thresholding preconditioning
(ILUT+GMRES) [15],

3. conjugate gradient method with incomplete Cholesky thresholding preconditioning
(ICT+CG) [5],

4. semicoarsening multigrid (SMG) method [16], and
5. semicoarsening multigrid preconditioned conjugate gradient method (SMG+CG) [16].

The accuracy and stability of the code is enforced via time step controls which cause the
time step to evolve as a function of time in a complicated fashion. This implies that the
linear solvers are presented each time step with a changing matrix that might or might not
be diagonally dominant. Hence, there is an intimate connection between time step behavior
and linear solver performance. We perform a problem size scalability study by comparing
linear solver performance over a wide range of problem sizes. The fundamental question we
address in this paper is: is it more efficient to invert the matrix in many inexpensive steps
(like diagonally scaled conjugate gradient) or in fewer expensive steps (like multigrid)? In
addition, what is the answer to this question as a function of problem size and is the answer
problem dependent?

The focus of this paper is scalability of algorithms. In the current parlance, the word
scalable usually refers to the number of processors. However, our definition is more general.
A code is scalable if it can effectively use additional computational resources to solve larger
problems. More precisely, the total work, storage, and communication per process should
not depend on overall problem size. As such, a specific factor that contributes to iterative
numerical scalability is the convergence rates of iterative linear solvers. We stress that
linear solver convergence can be discussed independent of parallel computing and is often
overlooked as a key scalability issue. The scalability problem of linear iterative solvers should
be analyzed in a multidimensional space where one degree of freedom is the problem size
and the other degree of freedom is the number of processors. The purpose of this paper is
to present results of the first phase of a two phase project. That is solver performance as
a function of problem size. In a subsequent publication, we will present results of solver
performance as a function of the number of processors for a given problem size and extend
the results to 3D.

The rest of the paper is organized as follows. In §2, we give an overview of the radiation-
hydrodynamics equations and code that we use in our testing, and then briefly describe the
underlying discretization methods in the code. In §3, we discuss the above linear iterative

Linear Solver Comparison December 8, 1998 4

methods. In §4, we present the suite of test problems, and in §5 we present our numerical
results. Finally, a summary discussion is presented in §6.

2 The Radiation-Hydrodynamics Code

2.1 Physics
2.1.1 Hydrodynamics

We assume a nonrelativistic formulation of hydrodynamics whose governing equations are
given by

dp

5 TV (pi) =0 (2.1)

0 _

o (pii+ B,) + V - (piiii + @,) + Vp =0 (2.2)
1 1 .

% <§qu +E, + E) +V- [(§pu2 +E, —I—p) i+ F] =0 (2.3)

In these equations,

P fluid density,
U fluid velocity,
p = fuid pressure,
E,, = fluid internal energy density,
P; = radiation momentum density,
®, = radiation momentum flux tensor,
E, = radiation energy density, and
F’; radiation energy flux.

In general, F_’; = 0215;. The radiation quantities appearing in the fluid dynamics equations
will be defined in the next section within the context of diffusion theory.

2.1.2 Radiation

The RHD code we use in this study models the radiation transport as multigroup diffusion
with flux limiting [14, 13]. Multigroup diffusion is an isotropic approximation to the radiation
transport equation. There is no assumption made concerning the distribution of photons
in frequency, only that the radiation field is approximately isotropic in space. Causality is
enforced via the Wilson flux limiter [14, 13]. In addition, we assume local thermodynamic
equilibrium so that the emission function is simply proportional to the Planck function
(Kirchoft’s Law) [14, 13]. We also assume that the electrons and ions carry their own
temperatures. Implicit in this assumption is that locally, the electrons and ions can be
represented by Fermi-Dirac and Maxwell-Boltzmann distributions respectively. We allow
for both electron and ion conduction by using the form due to Lee and More [11] which

Linear Solver Comparison December 8, 1998 5

incorporates both degeneracy as well as partial ionization effects. For this study however,
we have turned off electron and ion conduction. The electrons and ions are coupled together
through the Brysk-Spitzer coupling [6] which describes the rate of energy transfer between
Maxwellian distributions of particles (allowing for a partial degeneracy of the electron gas).
The electrons themselves are coupled to the radiation field through the opacity which is
corrected for stimulated emission. We use tabular forms for the opacity which come from
the code XSNQ [12]. This code uses an average atom approximation to compute bound-
bound, bound-free, and free-free contributions to the opacity coming from line absorption,
photoionization, and inverse brehmstrahlung. We do not include the effects of Compton
scattering. The governing equations are

10e, 1
2 = v (30VV6,,>+0,,(B,,(T6) e) (2.4)
O (pOnT) = VDI 4 pOv (T~ T) ~ [o (BT ~)dv (25)
0
9 (pOuT) = V- [DVT] = pCyOulTi = T (2.6

In these equations

g, = radiation spectrum,

T, = electron temperature,

T; = ion temperature,

0, = K,p = absorption inverse mean free path corrected for stimulated emission,
D, = electron conduction coefficient,

D; = ion conduction coefficient,
Cy, = electron heat capacity,
Cy, = ion heat capacity,

p = material density,
Q;e = Brysk-Spitzer electron ion coupling coefficient, and
B,(T.) = 8%};1/3 (e’“’/’“T - 1)_1 = Planck function.

The material motion and radiation transport are coupled via]3T, ®,, E, and ﬁr. In the
diffusion approximation, the radiation energy density E, is simply [;°¢,dv, which defines
the radiation temperature since E, = aT;* (a is the radiation density constant). The radiation
momentum flux tensor is diagonal and is proportional to one-third of the radiation energy
density. The radiation energy flux is related to the spectrum via Fick’s law and is a direct
consequence of the near isotropy of the radiation. For specific details regarding radiation
transport and the diffusion approximation, we reference the works of Pomraning [14] and
Mihalas and Mihalas [13].

Linear Solver Comparison December 8, 1998 6

2.2 Numerical Solution Procedures

2.2.1 Hydrodynamics

The RHD system (2.1)—(2.6) is solved on an ALE (Arbitrary Lagrangian Eulerian) mesh [1].
ALE is a technique that makes use of the ability of Lagrangian methods to let zones track
material motion and at the same time avoid the mesh entanglements that Lagrangian codes
inevitably get into by allowing the mesh to relax once a zone becomes too distorted. This
latter step is called remap. We refer the interested reader to papers in [1] for the details of
ALE hydrodynamics. The zones that make up the mesh always remain quadrilateral in 2D
or hexahedral in 3D. Hence, the mesh is structured and logically rectangular. In addition,
unlike AMR (adaptive mesh refinement) the number of zones in the problem remains fixed
in time. The solution scheme is predictor-corrector and is fully second order accurate in
space and time. There is a monotonic artificial viscosity (@) [2]. The hydrodynamics step
is governed by an explicit time step control determined by the sound speed and the zone
size. The hydrodynamics is operator split from the radiation and is solved for first in any
given cycle. In any given cycle, the hydrodynamic and radiation steps are performed only
once. This implies that the coupled RHD problem can only be first order accurate in time.
Figures 27-30 show a typical time snapshot sequence of an ALE mesh created during a
radiatively driven implosion.

The radiation equations (2.4)—(2.6) are solved on the hydrodynamic grid. It is this fact
and the fact that ALE relaxes a mesh that becomes too distorted that implies that ALE
has an effect on the matrix solvers themselves. We will comment on this observation in
subsequent sections.

2.2.2 Radiation

The multigroup radiation equations are solved via the partial temperature method [2]. A
linear continuous finite element representation based on triangular elements is used for the
“div-grad” operator [8, 18]. In 2D this means that we have a nine point stencil while in
3D the stencil is twenty seven. Integrating the “div-grad” over the volume of the j-th zone
yields

1
/j—th Jone (V . (Va,,)) AV = —ay1j+1[Evj41 — vyl + 015 [Evy — Evjai] (2.7)

30,
—boj1s [€vjrs — €vgl T Do lEvg — Evjsl
b1 jyst1 [Evjrstr — Eugl + b1 €0y — Eujs]

+bm19]+1 [61/7.7._5_"1 - 81/’]'] + bmla]+5 [61/7.7. - €V5j+5_1] :

The terms in equation (2.7) represent eight fluxes: four for the face fluxes (proportional
to a; and by) and four for the fluxes at the corners (proportional to b; and bm;). These
latter fluxes go to zero in the limit of an orthogonal mesh. In addition, the spectrum
€,, is evaluated at the new time step. Solving the radiation equations on an ALE mesh
which is logically rectangular but nonorthogonal in terms physical space yields a matrix
which has a simple striped structure. In Figures 1 and 2, we show the generic form of the
matrix generated by the radiation equation on an ALE mesh and the corresponding zonal

Linear Solver Comparison December 8, 1998 7

couplings of equation (2.7) generated by the finite element representation of the “div-grad”
operator. Flux conservation implies that the matrix is symmetric. In addition, the matrix
is also positive definite. Besides containing incoming and outgoing flux information, the
main diagonal contains information regarding local coupling physics and the old time step
radiation spectrum. These terms are order 1 4+ O(At). Couplings to neighboring zones are
represented in the matrix by the off-diagonal terms and come from incoming and outgoing
fluxes. These terms are order O(At). For an orthogonal mesh, the matrix structure simplifies
considerably with the matrix consisting of nonzero entries on the main diagonal, directly
above and below the main diagonal and nonzero entries one stride length away also forming
diagonals. Once the mesh becomes nonorthogonal, nonzero entries start appearing above
and below the diagonals that are one stride length away from the main diagonal. Running
pure radiation problems implies for our code a fixed mesh. However, running hydrodynamics
implies ALE and the subsequent relaxation of distorted zones. This implies for radiation
that the corner couplings which appear above and below the diagonals that appear one stride
length away from the main diagonal, can be relatively small compared to diagonal entries.

The equations (2.4)—(2.6) are solved implicitly with the understanding that the opacity,
conduction coefficients, heat capacity, and electron-ion coupling are evaluated at the start
of the radiation step and hence contain only updated information coming from the hydrody-
namics step. In addition, the Planck function is linearized about the old time stamp value
for the electron temperature. The full set of coupled radiation, electron, and ion equations
are operator split from each other and therefore solved in several steps. These are outlined
as follows:

1. Solve the radiation diffusion, 1/3 of the electron-ion coupling, and all of the radiation-
electron coupling.

2. Solve another 1/3 of the electron-ion coupling.
3. Solve the electron conduction and the remaining 1/3 of electron-ion coupling.

4. Solve the ion conduction.

2.2.3 Time Step Controls

The stability of the hydrodynamics demands a Courant condition based on the sound speed
and zone size. Accuracy on the other hand restricts the time step for the radiation. Since
the radiation solver step is split from the hydrodynamic solution step, the solution to a
coupled RHD problem is only first order accurate in time. In addition, the Planck function
is linearized about the old electron temperature, the various couplings between the photon,
electron, and ion fields are operator split, and quantities such as the specific heat use old
time stamp values all leading to inaccuracies if the time step is too large. For these reasons
the code restricts the fractional change in the radiation temperature in any given zone to be
less than 20%. By running analytic test problems, we have found that this restriction yields
reasonable accuracy. The splitting of the hydrodynamic and radiation steps also means that
it is important to limit the impact of a particular physics package on any other package. For
this reason we introduce a limit on the radiation acceleration. Radiation acceleration arises

Linear Solver Comparison

S O = T

= =

S = O =
= O % o

ot

=

O = © ©

x 0 ...
x x 0
X X x
x 0 ...
D x ...

December 8, 1998

e

Figure 1: Generic matrix nonzero pattern

Figure 2: Generic zonal couplings

Linear Solver Comparison December 8, 1998 9

due to the transfer of momentum from the photons to the fluid which in turn induces a force
or acceleration on the fluid. In diffusion, this acceleration is essentially just the gradient of
the radiation pressure. Hence the time step

radiation pressure

At ~ \/ p X zone size

defines a causality condition whereby the signal produced by the radiation pressure acceler-
radiation pressure

ating the fluid cannot exceed an effective sound speed given by

At this point we have several time scale restrictions governing the accurgcy and stability
of the code. A single time step governs both the radiation and hydrodynamic packages and
it evolves dynamically from some initial value. The choice of the initial value is problem
dependent and depends on the material properties and geometry of the system under study.
A general rule of thumb is that for problems involving optically thick materials an initial
time step of At = 10~*usec works well, while for optically thin materials an initial time
step of At = 10~8usec is needed. A point worth mentioning is that the RHD code used in
this paper is postdictive, in the sense that if any one of a series of time step restrictions is
violated the code only decreases the time step on the following cycle and not the current
cycle. Consequently, if any given time step satisfies the controls listed, then the time step is
allowed to increase by a factor of 1.2 in the next cycle. If however, the time step violates any
of the restrictions (i.e Courant, AT, /T, < .2, or radiation acceleration) the code operates
on the next cycle at a time step dictated by the largest of the three controls.

The time step control, as we will see has a bearing on the efficiency at which a partic-
ular solver can invert the matrix. Hence, there is an intimate connection between solver
convergence rates and evolving time steps values.

3 Iterative Linear Solvers with Preconditioning

3.1 Diagonally Scaled Conjugate Gradient

The first preconditioned iterative method we consider is the diagonally scaled conjugate
gradient method (DSCG). By this we mean the preconditioner for the conjugate gradient
method is simply the inverse of the main diagonal of the matrix. This has the virtue of
ease of coding, and for the time-dependent simulations of interest works quite well when the
timestep size is very small. This follows since the matrix A has the form A = I — AtJ, where
J is the discretized spatial differential operator. For very small At¢, A is diagonally dominant,
and so the inverse of its main diagonal should be a good approximate inverse. However, the
performance of DSCG is highly dependent on the problem size, degrading quickly as the size
increases.

3.2 Incomplete Factorizations as Preconditioners

The use of incomplete factorizations as a technique for generating preconditioners has been
extensive in the literature. We refer the reader to the excellent book by Saad [15] for a

Linear Solver Comparison December 8, 1998 10

comprehensive development of these techniques. The major advantage of using incomplete
factorizations as preconditioners is their easy application to a variety of problems. These
techniques only require a matrix, no specific knowledge of the problem under considera-
tion is required, unlike the case with structured multigrid methods. However, the standard
approaches to using these methods typically do not scale well with problem size, and our
numerical results below demonstrate this. For comparison purposes, we consider two incom-
plete factorization methods, both developed by Saad and his coworkers. Specifically, we use
ILUT (Saad,[15]) and a modified version of ILUT designed for symmetric positive definite
problems, called ICT. We only briefly describe these techniques, and refer the reader to the
above references for more detail on ILUT, and a recent report describing ICT [5].

3.2.1 ILUT

The ILUT algorithm was conceived as a combination of two earlier techniques, one being
a level-of-fill concept and the other a threshold dropping tolerance. Both techniques were
effective by themselves on certain classes of problems, but were plagued with inherent dif-
ficulties. The level-of-fill concept did not take into account actual numerical values in the
matrix, and hence could perform poorly on some problems where fill-in was important, while
with the drop-tolerance approach it was difficult to estimate the needed storage and work
to accomplish the factorization. ILUT was the first incomplete LU algorithm to successfully
combine the two approaches. The following basic approach is as follows:

Generic Incomplete LU Factorization with Thresholding, ILUT (1fil,droptol):

0 row(1l:n) = 0, U(1,1:n)=A(1,1:n)

1 do i=2,n

2 row(l:n) = A(i,1:n)

3 do k = 1,i-1 (and where row(k) .ne. 0)
4 row(k) := row(k) / U(k,k)

5 apply a dropping rule to row(k)

6 if (row(k) .ne. 0) then

7 row(k+1:n)=row(k+1:n)-row(k)*U(k,k+1:n)
8 endif

9 apply a dropping rule to row(l:n)
10 enddo

11 L(i,1:i-1) = row(1:i-1)

12 U(i,i:n) = row(i:n)

13 row(li:n) =0

14 enddo

The dropping rules in lines 5 and 9 are based on an input relative tolerance droptol and a
sparsity dropping tolerance 1fil. In ILUT(1fil,droptol), the following rules are used:

e In line 5, if [row(k)| < 7; = droptol - 2-norm of row ¢, then row(k) := 0.

Linear Solver Comparison December 8, 1998 11

e In line 9, first any element in the row with magnitude less than 7; is dropped. Then
only the 1fil largest elements in the L part of the row and the 1fil largest elements
in the U part of the row are kept, plus the diagonal element.

The second step controls the number of elements per row. Note that no pivoting is performed.
An ILUTP variant performs pivoting. The advantages of ILUT over earlier ILU techniques
are two-fold:

e Taking droptol = 0 and 1fil = n gives an exact sparse LU factorization with no
pivoting. Thus, the user can control the quality of the preconditioner.

e The user can determine how much storage is needed beforehand.
Since ILUT is formulated for nonsymmetric matrices, we use ILUT as a preconditioner for
the Generalized Minimal Residual (GMRES) linear iterative method.
3.2.2 ICT

For symmetric positive definite (SPD) problems, ILUT is too costly, both in terms of the
storage and computational work involved. Generally, the Cholesky factorization for SPD
matrices is used as the basis for generating a preconditioner based on incomplete factoriza-
tion. The ICT algorithm is based on an LDL” decomposition of an SPD matrix A. Briefly,
consider the sequence of matrices

A A wgp
k+1 — T 3
Wiy1 Ok+1

where A, = A. If A; is nonsingular and its LDL” factorization
Ay, = Ly Dy LY

is already available, then the LDL” factorization of A, is
Ak L= Lk 0 Dk 0 L{ Yk+1
i ylcT+1 1 0 digr 0 1

—17-1
Ye+1 = Dk Lk Wg+1

T
dpy1 = gyt — Ypo1 DkYrra-

in which

Hence, the last row and column of the factorization can be obtained by solving one unit lower
triangular system and computing a scaled dot product. The ICT incomplete factorization
based on this factorization is given as follows:

Generic Incomplete LDLT Factorization with Thresholding, ICT(1fil,droptol):

Linear Solver Comparison December 8, 1998 12

0 D(1,1) = A(1,1), L(1,1) = 1;

1 do k = 2,n

2 row = A(k,1:k-1)

3 do i = 1,k-1 (and where row(i) .ne. 0)

4 if (abs(row(i)/D(i,i)) .le. droptol) row(i) = 0
5 if (row(i) .ne. 0) then

6 do j = i+1,k-1

7 row(j) = row(j) - row(i)*L(j,1i)

8 enddo

9 row(i) = row(i) / D(i,i)

10 endif

11 enddo

12 drop all but the 1fil largest elements in row
13 D(k,k) = A(k,k) - rowxD(1:k-1,1:k-1)*row’

14 L(k,1:k-1) = row

15 L(k,k) =1

16 enddo

(Note that in the algorithm, row represents y,fﬂ.) If A is SPD, then the diagonal matrix
D has all positive entries in its LDL” factorization. For the incomplete factorization, this
may no longer be true, and likely signals a poor approximation to the original matrix.
In the testing described below, we use the ICT algorithm as a preconditioner in a PCG
(Preconditioned Conjugate Gradient) linear iteration.

3.2.3 Ordering Strategies

When using incomplete factorization techniques to generate preconditioners, the ordering
of the rows and columns of the matrix can have a dramatic effect on the amount of fill-in
that occurs. For direct solvers, some version of the minimum degree algorithm is a good
generic choice for a reordering strategy as it produces the least amount of fill-in. However, a
reordering strategy that generates the most effective preconditioner based on an incomplete
factorization typically is not the one with the least fill-in. Some strategy based on mini-
mizing the bandwidth, such as the reverse Cuthill-McKee (RCM) reordering strategy, often
generates more effective preconditioners. This fact is not well understood, and has been the
subject of much research [15]. We use the RCM reordering algorithm in all of the problems
considered below, as it is crucial for good performance on the larger test problems.

3.3 Multigrid solvers and preconditioners

Multigrid methods can be very efficient solvers for the linear systems arising from discretized
elliptic partial differential equations. Multigrid’s chief advantage is that it is a scalable
algorithm in that, when properly designed, the solver’s convergence rate is independent of
the size of the discretized system. Standard multigrid methods combine simple relaxation
(which quickly reduces high-frequency error components) with error correction from a coarser
grid (which can accurately represent low-frequency error components). For our problem,

Linear Solver Comparison December 8, 1998 13

the multigrid solver must be able to efficiently deal with anisotropies and widely variable
coefficients. The semi-coarsening algorithm used is based on the work by Schaffer [16] (see
also [7] and [17]), and we will briefly discuss this particular multigrid algorithm. We focus on
the 2D algorithm (commenting on the 3D extension) and on those features that differentiate
it from standard multigrid methods. For more general multigrid references, see [3], [4],
[9], [19]. For current information on the multigrid field, including an extensive bibliography,
a repository of papers and codes, and current events, access the World Wide Web server
MGNet at http://casper.cs.yale.edu/mgnet/www/mgnet.html.

3.3.1 SMG: semi-coarsening multigrid

Let AU = F be the given linear system to solve, where the unknown U and right-hand
side F' are vectors defined on a logically rectangular grid. We will use an h superscript to
denote quantities defined on the given grid. The matrix A is symmetric, positive definite and
connections have the standard “nearest-neighbor” 9-point stencil form. The multigrid algo-
rithm of Schaffer uses a combination of semi-coarsening, line-relaxation, and operator-based
interpolation. The resulting algorithm is efficient and robust with respect to anisotropic and
widely variable coefficients in the matrix A.

As the grid is logically rectangular, there is a unique index (i, j) for each point on the
grid, and the grid can be given a “red/black” line coloring. All unknowns {(4, j),j odd} are
considered “red” and will be used for the coarse grid. We will use a 2h superscript to denote
quantities defined on the coarse grid. This is called semi-coarsening (as opposed to full or
standard coarsening) as the coarse grid is only coarser in one of the dimensions. Red/black
line relaxation involves updating the solution at all red lines to satisfy their equations (a
tridiagonal solve for each red line) followed by a similar update for the black lines. Because
of the 9-point stencil, there is no dependence between lines of the same color and they could
be updated in parallel.

An important, unique feature of the SMG algorithm is the definition of the interpolation
operator I used to transfer an error correction from the coarse to the fine grid. The
definition is motivated by the relationship between error on red and black lines after a black
line relaxation sweep. To briefly describe the approach, let

ApraUr i+ AU+ Aj iU = Fy (3.8)

be the equations for the J line. Here Uy = (Uiy,i =1,...,n,) and similarly for Uy;.
After relaxing this line, the error equation is

Ajjiej1+ Az e+ A 0e541 =0, (3.9)

SO
-1 -1
€y = _AJ’JAJ,J_leJ_l - AJ7JAJ,J+16J+1. (310)

After black line relaxation this relationship describes how the error at black lines is related
to the error at red (coarse) lines; it gives the “ideal” interpolation formula. However, using
equation 3.10 leads to non sparse interpolation operators. In the SMG algorithm, sparse
approximations to these ideal interpolation operators are used. The matrices —AjjA JJ—1

Linear Solver Comparison December 8, 1998 14

and —A}FIIA 7,741 are approximated by diagonal matrices with the same action on constant
vectors. The computation of these interpolation operators involves a tridiagonal solve for
each black grid line.

With this definition for the interpolation operator I% its transpose is used for the re-
striction operator I?" (used in transferring residuals from the fine to the coarse grid), and
the coarse grid versions of A are defined by the Galerkin condition, i.e. A%" = IZhAPTE
These components are then used in a standard multigrid V-cycle as outlined below.

V (v, v9)-cycle

1. Pre-relaxation on APU" = F*. Perform v; sweeps of red/black line relaxation.
2. Set F2h — [2h(Fh — ABURY.

3. “Solve” A%r[?h = F?h by recursion.

4. Correct UM «— U™ + I}, UM

5. Post-relaxation on A"U" = F*. Perform v, sweeps of black/red line relaxation.

The equation to be solved in step 3 has the same form as the original grid h problem. It
is solved by applying the same algorithm using a still coarser grid 4h. Eventually, a coarse
grid is reached that has a single grid line and line relaxation is a direct solver.

3.3.2 SMG+CG: multigrid as a preconditioner

As will be shown in the numerical results, the SMG algorithm alone can be an efficient
solver for our linear systems. However, using it as a preconditioner in a PCG (Precondi-
tioned Conjugate Gradient) iteration is generally a more robust strategy and, depending on
the problem, can be more efficient as well. In the preconditioning step of PCG we apply a
single V-cycle of SMG, and the V-cycle must be constructed so as to yield a symmetric pre-
conditioner. The reference [10] provides conditions that guarantee symmetry of a multigrid
V-cycle, and the SMG algorithm meets these provided that the number of pre-relaxations,
v, is equal to the number of post-relaxations, vy.

In all our numerical tests, the SMG runs used a V' (1, 0)-cycle and the SMG+CG runs used
a V(1,1)-cycle as the preconditioner. The V'(1,0)-cycle is generally the most efficient stand-
alone solver, so the SMG+CG carries the computational overhead of the PCG algorithm
plus the additional relaxation sweeps needed to guarantee symmetry. In comparing the
SMG+CG runs to the runs using SMG alone, SMG+CG runs have greater computational
work per iteration, but require fewer iterations.

4 The Multi-Physics Test Suite

The purpose of the muti-physics test suite is to present to the code and in particular the
linear solvers, a wide spectrum of problems. In this way, an accurate and fair assessment of
the speed of the solvers can be made. The first part of the test suite covers radiation flow

Linear Solver Comparison December 8, 1998 15

alone without the effects of hydrodynamic motion. The second part tests radiation flow in
the presence of material motion. Two test problems that fit into the pure radiation flow
category are (1) radiation flow on a highly distorted mesh in 2D (Kershaw mesh problem,
see Figure 3), and (2) radiation flow in a spherical geometry (see Figure 11). In both cases,
the lack of material motion means that the mesh is fixed in time. The last two problems run
in the suite test the RHD capabilities of the code. More importantly, from the standpoint of
this paper, it tests the linear solvers on a mesh that is changing with time. Because of the
complicated mesh pattern that arises from shocks and ordinary material motion, the time
step is a complicated function of time. The test suite is intended to test the ability of the
linear solvers to solve the radiation equations on a dynamically changing mesh with a time
step control determined by both hydrodynamic and radiative processes. The net result as
far as the linear solvers are concerned is that the matrix itself is changing both in the values
of its elements and in its structure. The solver performance tests presented in this paper are
therefore more severe and realistic than are test matrices which are typically used to judge
solver performance. We do not wish to imply that our test suite is exhaustive, only that it
presents for what we believe the first time, a realistic assessment of linear solver performance.
Figures 3, 11, 19 and 27 show the initial geometry and mesh for each of the problems in the
test suite.

All problems presented here were run without electron or ion conduction. In addition,
the number of frequency groups was taken to be one. In this way, the statistics presented in
this paper are for only one matrix solve per cycle. The advantage of doing this is that the
performance figures for radiation diffusion are not confused with those of material conduction.
Although calculations without conduction or with one frequency group may not give the best
representation of reality, this is not the purpose of this paper. We are primarily interested
in linear solver performance in complex RHD flows. The importance however, of the linear
solver timing results presented here become magnified when a full multigroup calculation
involving say 50 groups is performed. For example, the results presented for CPU time spent
in the radiation package would be multiplied by approximately 50 times thereby dominating
other physics packages such as hydrodynamics. This means, that a slow inefficient solver
becomes a tremendous sink of time in any multiphysics code since the solver has to perform
the inversion for each frequency group. This fact should be kept in mind.

4.1 Kershaw Problem

The problem consists of a slab of CH foam heated at one end with a constant temperature
source of 300 eV. The slab measures 4.0 cm in the vertical direction and 4.5 cm in the
horizontal direction. The CH foam is at a constant density of 1.05 gm/cc. The mesh is
shown in Figure 3. The small problems consists of 40 x 50 zones, the medium 80 x 100 zones,
and the large 320 x 400 zones. The boundary conditions are reflecting at the right, top, and
bottom boundaries and open at the left boundary. The problem describes Marshak wave
propagation. The problem is run to 10~% microseconds.

Linear Solver Comparison December 8, 1998 16

4.2 Spherical Diffusion without Hydrodynamics

This problem consists of a ball of DT ice at a density of .25 gm/cc at a radius of .04 cm,
a shell of CH foam at density 1.05 gm/cc and a radius of .07 cm, a shell of sourced He
at a density of .0005 gm/cc, temperature of 300 eV and a radius of .24 c¢m, and finally a
shell of Au at a density of 19.3 gm/cc and a radius of .3 cm (see Figure 11). This problem
represents an ICF capsule where the DT ice is the fuel, the CH foam is the ablator, and the
He the gas inside the Au hohlraum. The source temperature is set at 300 eV. This problem
is run without material motion and hence merely tests the diffusion of radiation on a fixed
polar geometry. This problem was run with 1000 zones (10 angularx100 radial), 10000 (10
angularx1000 radial), and 100000 zones (100 angularx1000 radial). The problem is taken
to be rotationally symmetric about the x axis and is run to 10™3 microseconds.

4.3 Radiatively Driven Symmetric Implosion

This problem is identical in principle to the previous problem with hydrodynamics turned
on (see Figure 19). This problem describes the ablation of the CH foam followed by the
subsequent implosion of the DT ice capsule. The DT capsule continues to implode with
corresponding increases in temperature and density until the shocks converge on the center
and bounce, whereupon the DT capsule explodes. This problem was run on an initially
uniform rectilinear mesh in the small (30x30 zones), medium (100x100 zones), and large
(300x300 zones) categories.

4.4 Radiatively Driven Asymmetric Implosion

This is a problem identical to the radiatively driven symmetric implosion except the DT
ice capsule has been shimmed so that it is an ellipse (since this problem is also rotationally
symmetric about the x axis the capsule really is an ellipsoid). The major axis is .06 cm
while the minor axis is .04 cm (see Figure 27). In this problem, the CH foam is heated and
ablates in an asymmetrical fashion. This causes an asymmetrical implosion of the capsule.
This problem was run with 1,000 zones (10 angular x 100 radial), 10,000 (100 angular X
100 radial), and 100,000 zones (100 angular x 1,000 radial). This problem tests the linear
solver performance on a mesh, though initially symmetric, becomes skewed in time due to
off center convergence of incoming shocks.

5 Results

The Kershaw calculations were performed on a DEC-Alpha with a 300Mhz Alpha chip with
8 GB of main memory. The other problems were performed on a 625 Mhz DEC-Alpha chip
with 8 GB of main memory. Before a given result was considered satisfactory, we had to
make sure that a given problem run with a variety of linear solvers was giving identical
answers. In order to do this we compared time dependent data at selected zones in a specific
problem and also the time step as a function of time for each solver. This method proved
useful in locating several bugs in the linear solvers. A given problem run on a variety of linear

Linear Solver Comparison December 8, 1998 17

solvers was not considered acceptable unless all time dependent data for a given problem
size agreed to one part in 10°.

For all of the runs using ILUT and ICT, we used droptol = 0.0001 and 1fil = 20.
Additionally, in all of the figures showing iteration and timestep counts, the labels A, B,
C, D, and E refer to the methods DS+CG, ILUT+GMRES, ICT+CG, MG and MG+CG,

respectively.

5.1 Kershaw Problem

This problem was run to a time slightly past steady state. Figures 3, 4, 5 and 6 show the
evolution of the radiation front from time zero to steady state. The transient profile shown
in Figure 4 shows some mesh imprinting. The steady state profile however shows uniform
contours; a benefit of the finite element representation of the “div-grad” operator. For the
small, medium, and large Kershaw mesh problems, Figures 7, 8 and 9 show iteration count
per cycle as a function of problem time in microseconds. In addition, in Figure 10 we show
the time step in microseconds versus problem time, also in microseconds, for the medium
size problem. (For all of the tests, we show only the time step history for the medium size
problem, as this is representative of the other cases.) We have started the time step at 1071
microseconds. This time has been made artificially small so that the DSCG algorithm solves
the matrix in one iteration. As mentioned in §2.2.3, the code allows the time step to grow
by a factor of 1.2 per cycle unless a given accuracy or stability criterion is violated. The
nature of this particular problem (i.e. the mesh) and its corresponding time step controls
imply that the matrix is diagonally dominant for a period of time beginning at t = 10~1°
microseconds. As the radiation front moves through the distorted mesh, zones are becoming
more non-orthogonal thus giving rise to large corner couplings. This effect in the matrix
means that off diagonal elements are being populated with non-trivial values. At the same
time, as the radiation front is travelling through the CH foam, the time step is increasing.
This also leads to off diagonal elements in the matrix becoming more important. The result
of these two effects can be seen when comparing iteration count versus time for the various
solvers. Although all the solvers scale with problem time, DSCG is by far the most sensitive.
When we look at iteration count for the medium and large Kershaw problems, we observe a
sensitivity (albeit weak) of both the ILUT+GMRES and ICT+CG solvers. By far, the MG
and MG+CG solvers show the best scalability as evidenced by the fact that their iteration
count as a function of time is almost independent of problem size.

Although iteration count is interesting, the bottom line is CPU time. Tables 1, 2 and
3 give the CPU times for the parts of the simulation that we are interested in : total code
execution time, execution time for the radiation transport, and execution time for the linear
solvers. For the small Kershaw problem the ILUT+GMRES and ICT4+CG are competitive
with the multigrid solvers (MG and MG+CG) each giving rise to a speedup of 3.5 compared
to DSCG. As the problem size is increased to 8,000 and then 128,000 zones, we observe
several interesting features of the solvers (see Table 4). The ILUT+GMRES seems to reach
an asymptotic speedup value of ~4 relative to DSCG. The ICT+CG solver is able to yield
a speedup of a factor of ~11 by the time we reach problem sizes on the Kershaw mesh of
128,000. But, by far, the biggest winner is MG and MG+CG. The medium Kershaw mesh
shows a slight separation in speedups between ICT+CG and the MG solvers. However, the

Linear Solver Comparison

DB: zK2ABPAL.si o

Times 1.2e-83 Oycles 1

20 Contour plot
Tr

var:
Pe levels

1.0P9a

.-: @.8763
— @.7s25

— @.6287
— @.cpsa

— m.s813
— @m.2578

.: @. 1337
G, 3108

Max:
Mine

Mesh

1. 020
a.01800

plot

December 8, 1998

18

mesh: hydro_mesh

e
-
i
AT
777 R\)
l,%lllll//’ f{’;{““‘“
S

e
SRS S
SRR

FSeneataR
SR
TR
SNy

RN
i
sy R
B e o W
==
= =

o
=
=
=

Boundary plot: material
mats:

Figure 3: Initial geometry for Kershaw Problem

OB: zk29PP25.s1 lo
Time: 5.33813e—-A7 Cycle: 25

20 Contour plot
Tr

var:

Pe levels

1.0P9a
@.8756
@.7511
. 6267
0.5023
@.3773
@. 2534
@. 1238
@, B4E

1. 030
2.0m4597

h plot

1 hydro_mesh

4

i

—
e
e

17 T
e i

T
e
Ve o

L

)

RS
S

sl s
s 0k
A o
RSO S

= 5

SRR N S

-ﬁnﬂ§§§§§§§§§§=}

T

S

R A

S
=

S R
< 2P SIS
P22o >SS
e

S
s e

Lrrsls
e
77
o5y e
i

Boundary plot: material

mats:

Figure 4: Snapshot 2

Linear Solver Comparison December 8, 1998

DB: zK2AB@3Z.si 10
Time: 1.@84148=—A6 Cycle: 32
20 Contour plot

Tr

Var:
Fo levels kS

2.6259
@a.65013
@.37686
m.2519 2
@.1272
@ @25

1. 030
0.0m2518

Mesh plot
mesh: hydro_mesh

X 2 7 .
- =
o] 777 ‘"’”‘Eﬁ;mgr -
%’f,’g/z’;’égf;’gggj‘:’—?”:—
=
Aggg%z%Zgg%%%éééﬁa
- L
i

s
e
SRS
“\\\\\\\

ESoTaS 18
RIS sas

IR
SNy

S
ST

72 >SS

P,

27 —= i

Ny

=

Boundary plot: material
mats:

Figure 5: Snapshot 3

DB: zK2ABAYE.si lo
Time: 2.70843=—05 Cycle: 46
20 Contour plot

Tr

Var:
Fo levels kS

— @ 7701
A.8935

@.6168
— @.sumz 2
@. %636

. 3869

Max: 1.008
Min: @.3259

Mesh plot
mesh: hydro_mesh

s

i
77 e e
e i
G e LY

T e
e e
e ‘=r

7
il
I e
A ST
RSO S

NN 363
_z TN b S T

e

T L

ey
ANV
R ~u§Ess§§&mmmun
- L SN VTS
3 O g S S
I e Ny

e

g
i
s
o5y e
i

Boundary plot: material
mats:

Figure 6: Snapshot 4

Linear Solver Comparison December 8, 1998

MM T W

1.00e+03 -
1.00e4+02
1.00e+01 -
1.00e+00 - Lm0 s o e e ey e e e e
1.00e08 1.00e08 100e07 100e06 100e05 1.00e-04
CURAVE LABEL MR RLIERY YR R FILE
A L4 12210 E0ded 1002400 1 57e4f@ uhsl
B ILUTIGMAES 120210 E0defd 200m00) 200 ohe2
c ICT4CG 12010 G0ue0d 100400 7000 uhsd
D G 12010 E0u=fd 10000 1 E0mif1 uhsd
E MNG:CE 120210 D44 1002400 7000 uhsE

Figure 7: Iteration Counts for Small Kershaw Problem

M3 g W

1.00e+03

1.00e+02

1.00e+01
1.00e+00 - 0 s 8 s o e e ey e e e
100008 1.00e08 100e07 100608 10005 1.00e-04
CURAVE LABEL MR RLIERY YR R FILE
A L4 120210 607=04 2002400 397402 uhmi
B ILUTIGMAES 120210 E07=04 200=00 22001 uhkm
c ICT4CG 12010 607=04 200=400 130401 ukmd
D G 1010 607=04 10000 1 80mf uhmd
E MNG:CE 120210 607204 100400 E00z400 uhmE

Figure 8: Iteration Counts for Medium Kershaw Problem

Linear Solver Comparison December 8, 1998

MM W

1.00e+03

1.00e4+02

1.00e+01

1.00e+00

1.00e-08 1.00e-08 1.00e-07 1.00e-068 1.00e-05 1.00e-04

CURYE LABEL HNMN MK FMN ¥MAK FILE
A DEG 12e10 608204 100m00 1 A2emd ull
B ILUT4EMAES 120210 G0S=fi 200m00 1A1eE ull2
C GGG 120810 G0%=ld 100m00 4 e0] ukld
D 120210 E08=04 100=00 2¥e01 uhld
E MGLE 120210 E00=f4 10000 80Del0 UME

Figure 9: Iteration Counts for Large Kershaw Problem

MM R EE

1.00e-09 o -

1.00e-09 1.00e-08 1.00e07 1.00e06 1.00e-05 1.00e-04

GURYE LAREL AME FLUT I L YMAK FILE

A timesiep s problem fime 12e10 G07e4 12010 1M0e06 ukmi

Figure 10: Time Steps for Medium Kershaw Problem

Linear Solver Comparison December 8, 1998 22

real strong separation occurs for the large problem where both MG solvers beat ICT4+CG by
a factor of 2. This problem is evidence of the fact that running a scalable algorithm like MG
or MG+CG, although expensive per iteration, more than makes up for its overhead when
large matrices (order 100,000 by 100,000) need to be inverted.

5.2 Spherical Diffusion without Hydrodynamics

In this problem, the mesh is again fixed in time. This problem tests the linear solver con-
vergence rate on a mesh more typical of what appears in ICF calculations (at least initially
before instabilities and shocks set in and destroying the symmetry of the mesh). Figures 11,
12, 13 and 14 show the evolution of the radiation temperature and mesh for the problem.
In Figures 15, 16 and 17 we see iteration count as a function of time for the small, medium
and large size meshes. Figure 18 shows the time step as a function of time. As mentioned
previously, the time step started at 1075 microseconds and was allowed to increase by the
factor of 1.2 per cycle unless the fractional change in the radiation temperature exceeded .2.
The time step increases, and if the accuracy criterion is violated, then the reduced time step
is applied at the next cycle. We note some of the same features that were observed in the
Kershaw mesh. First, the obvious scaling of DSCG iteration count with both time step and
problem size. Although, the growth of iteration count with time step and problem size is not
as severe as the Kershaw case. The reason for this is primarily due to the smooth, almost
orthogonal nature of the mesh compared to the Kershaw problem which implies a matrix
more sparsely populated in off diagonal entries. This explains for example why the DSCG
iteration count for this problem barely gets past 100 for the medium size problem while for
the Kershaw case, the iteration count was at several hundred. Tables 5, 6 and 7 show the
CPU time spent in the whole code, radiation package, and linear solver. In addition, the
relative speedups compared to DSCG are shown. The speedups for all solvers relative to
DSCG is impressive even for the small problems with a maximum speedup of 3.58 for the
MG solver (see Table 8). For the medium mesh results, again MG by itself is the clear winner
(speedup factor of 10.54), closely followed by MG+CG (speedup factor of 7.76), ICT4+CG
(speedup factor of 6.25), and finally ILUT+GMRES (speedup factor of 4.58). Similarly to
the Kershaw problem we again see MG (either MG alone or as preconditioner to CG) a clear
winner. The large mesh problem shows even more impressive results, with MG alone a clear
winner at 16.75 speedup over DSCG.

| | DS+CG | ILUT+GMRES | ICT+CG | MG | MG+CQG |

Whole Code | 179.14 118.54 102.72 | 105.33 | 103.46
Radiation 156.06 93.75 78.60 82.26 80.18
Linear Solve | 105.70 40.87 30.33 31.56 29.12

Table 1: Runtimes for Small Kershaw Problem (in seconds)

Linear Solver Comparison December 8, 1998 23

| | DS+CG | ILUT+GMRES | ICT+CG | MG | MG+CG |

Whole Code | 1255.81 592.61 496.61 456.99 439.55
Radiation 1161.53 491.89 397.14 362.63 345.54
Linear Solve | 942.80 270.00 181.56 143.79 127.20

Table 2: Runtimes for Medium Kershaw Problem (in seconds)

| | DS+CG | ILUT+GMRES || ICT+CG | MG | MG+CG |

Whole Code | 103294.39 31096.20 15124.77 | 10932.68 | 10430.30
Radiation | 101238.93 28890.89 12929.50 | 8866.40 | 8373.00

Linear Solve | 96403.21 23910.35 8105.20 | 3993.01 | 3520.13

Table 3: Runtimes for Large Kershaw Problem (in seconds)

| | DS+CG | ILUT+GMRES | ICT+CG | MG | MG+CG |

Small Problem 1.00 2.59 3.48 3.35 3.63
Medium Problem 1.00 3.43 5.09 6.56 7.41
Large Problem 1.00 2.43 11.89 24.14 27.38

Table 4: Speedup (over DS+CG) for Kershaw Problem

Pseutitcolor flot
var: tr
Fe levels .38

@.3828

-: BA.2628
— B.2253

— @.1873

‘p— @.15@5
— @8.1131

— B.®|757
@.83B4
@.pa1a@

Max: B.3d@@
Min: 2.7 1 ARd

R (cm)
=
-
t

@a.a5

b/

%] a.85 2.18

A.15 @.2@ A.25 a.38
Zz (cml)

Figure 11: Initial geometry for Spherical Diffusion Problem

Linear Solver Comparison December 8, 1998 24

Fscudocolar plot
art Tr
Pc levels @.1a

3008
2828
2253
1879
1EAE
1131
Aa7s7
A354

a1

. 308
. AA1083a

2 @ 888 @88 a

Max:
Mine

=1

lcml

R

a a.az 2. 24 a.as #. 28 2.12
Z (cm)

Figure 12: Snapshot 2

Fscudocolar plot
art Tr
Pc levels a.

3008
2828
2253
1879
1EAE

=]

1131
Aa7s7
A354

a1

. 308
. AA1083a

Max:
Mine

2@ 888888

=1

lcml

R

a a.az 2. 24 a.as #. 28 2.12
Z (cm)

Figure 13: Snapshot 3

Linear Solver Comparison December 8, 1998

Fscudocolar plot
Vari Tr

Pc levels a.

=900

| e~

- zz53

- 1879

1508

1151

= a7s7

LT

2018

2 @ 888 @88 a

. 308
. AA1083a

=

")
3%
=1

B lcml

Z (cm)

Figure 14: Snapshot 4

50.000

40.000

30.000

20.000

10.000

1.000e-08 1.000e-07 1.000e-06 1.000e-05 1.000e-04 1.000e-03

Figure 15: Iteration Counts for Small Spherical Diffusion Problem

25

Linear Solver Comparison December 8, 1998

1000.000 — T T L e T T

100.000 -]

10.000 H

" l
{6 DE., | MDE.. o D ..t DE . RE
1000608 1000e-07 1000606 1000605 1000e-04 1.0008-03

Figure 16: Iteration Counts for Medium Spherical Diffusion Problem

1000.000 — e — SN

100.000

10.000

1.000
1.000e-08 1.000e-07 1.000e-06 1.000e-05 1.000e-04 1.000e-03

Figure 17: Iteration Counts for Large Spherical Diffusion Problem

Linear Solver Comparison

December 8, 1998

1.000e-04 2
1.000e-05 ?
1.000e-06 ?
1.000e-07 ;
1.000e-08 §_
1.000e-09 ?

1.000e-10 —

1.000e-10

1.000e-08

1.000e-08

1.000e-04

Figure 18: Time Step for Medium Spherical Diffusion Problem

[DS+CG [ILUT+GMRES [ICT+CG | MG | MG+CG |

Whole Code 76.95 68.42 65.42 64.52 66.18
Radiation 59.09 50.47 47.36 46.23 48.18
Linear Solve 21.22 11.78 8.92 5.93 7.95

Table 5: Runtimes for Small Spherical Diffusion Problem (in seconds)

| [DSTCG | ILUT+GMRES | ICT+0G | MG | MG+CG |
Whole Code | 6074.63 1633.89 150951 | 1393.90 | 1445.30
Radiation 4761.21 1267.50 1141.31 | 1029.40 | 1079.23
Linear Solve | 1415.69 308.95 226.55 134.31 182.40

Table 6: Runtimes for Medium Spherical Diffusion Problem (in seconds)

| [DS+CG [ILUT+GMRES [ICT+CG | MG | MG+CG |
Whole Code | 104472.08 | 20361.25 12745.62 | 11405.62 | 12001.11
Radiation | 82519.81 17662.52 10054.89 | 8746.91 | 9292.76
Linear Solve | 23395.36 10146.93 2704.00 | 1397.07 | 1925.50

Table 7: Runtimes for Large Spherical Diffusion Problem (in seconds)

27

Linear Solver Comparison December 8, 1998 28

| [DS+CG [ILUT+GMRES | ICT+CG | MG | MG+CG |

Small Problem 1.00 1.80 2.38 3.58 2.67
Medium Problem 1.00 4.58 6.25 10.54 7.76
Large Problem 1.00 2.31 8.65 16.75 12.15

Table 8: Speedups for Spherical Diffusion Problem

5.3 Radiatively Driven Symmetric Implosion

This problem tests the radiation-hydrodynamics on a rectilinear ALE mesh in a configuration
relevant to ICF calculations. The important fact concerning this problem and the next
problem is that the mesh is dynamic; responding to material motion and relaxing when zone
distortion has become too extreme. Figures 19, 20, 21 and 22 show time snap shots of the
radiation temperature and mesh for the medium size problem. The figures show the initial
300 eV He source, the subsequent ablation of the CH foam, and finally the compression of the
DT ice. Figures 23, 24 and 25 show the iteration count as a function of time for all solvers.
The DSCG again shows the most iterations, with the characteristic scaling of iteration count
with problem size and time step. For the small problem, the MG shows the next highest
number of iterations to convergence followed by ILUT+GMRES, ICT4+CG and MG+CG
(the latter two show comparable iteration counts). For the medium and large problems, we
see the characteristic weak scaling of ILUT4+GMRES and ICT+4+CG with problem size and
the MG+CG scheme being almost completely independent of problem size. It is interesting
to note that the MG scheme, although algorithmically scalable, requires approximately 100
iterations to converge over a large portion of the problem time. This fact illustrates the
utility of using MG as a preconditioner for CG to give a more robust algorithm overall.

One important feature of the time step in this type of problem (i.e. implosions), which
is different from the radiation only cases discussed earlier, is the rapid decrease in the time
step due to the shrinking of zones (see Figures 21 and 26. This time step drop is primarily
due to the Courant condition placed on the hydrodynamics. Tables 9, 10 and 11 show the
CPU time spent in the whole code, radiation package, and linear solver. In addition, the
relative speedups compared to DSCG are shown in Table 12. What was surprising was
the relative speedups, although significant, were not as large as were seen earlier in the
pure radiation diffusion problems. For example, for the small problem, the speedups never
exceeded a factor of two while the large mesh problems dont quite reach speedup factors of
10. This fact is due to two factors. One is the time step control coming from the explicit
hydrodynamics (i.e Courant condition) and the other is the property of ALE to smooth out
distorted meshes. In fact, if allowed to do so, ALE would try to smooth out the Kershaw
mesh if the hydrodynamics were turned on. Lower time steps keep the matrix diagonally
dominant and a smooth mesh, as discussed earlier, means smaller corner couplings and a
more sparsely populated matrix. These two effects combine to make a matrix that is easier
to invert than the Kershaw case and a matrix that is more diagonally dominant than the
spherical diffusion without hydrodynamics. This latter fact is because of the rectilinear
nature of the mesh which keeps the corner coupling terms small.

What is a little misleading when one looks at overall code CPU time, is the fact that

Linear Solver Comparison December 8, 1998

Pseudocolar plot
Vart: tr
Pc levels

B. 3228

-: @, 2626
B.z2255

@. 1879

— B.1l5B%
a.1131
a.@a787
B.@384

2. @18

2 8.328@
Mint B.2212212

Mesh plot
Mesh: hydro_mesh

[cm

A

a A.95 P.1A2 @A.15 @2.20 A.25 A.34
£ (cm)

Figure 19: Initial geometry for Symmetric Implosion Problem

Pseudocaolor plat

Var: Tr

Pe levels .

-: a. 3002

@. 2628

a.zzsy
a. 1990
@. 15@8 2.

— @.1132
a.
a.
@
8
2

— @758
?354
@10
@a.
Max spa2
Min 2089947
Mesh plot
Mesh: hydro_mesh
£
0
i

2 @.25 @.12 @.15 @.2@ @.25 @. 3@
Z (cm)

Figure 20: Snapshot 2

Linear Solver Comparison

December 8, 1998

Pseudacolor plat
Yar: fr

Pe levels

Max @
Mine

Mesh
Mesh

@.3501
@. 3084
A.Z2628
@. 2182
@. 1755
@.1319
@. @882
a. 4486
@ @310

@.35a1
2. 20895E8

plot

: hydro_mesh

2.3

teml

A

@.25 @2.12 @.15 @.2@ @.25 @.3@
Z (cm)

Figure 21: Snapshot 3

Pseudacolor plat
Yar: fr

Pe |

Max @
Mine

Mesh
Mesh

evels
@A. 3201

@. 2802
A.Z24/@3
@ 2004
@.16@s
@. 1z@a6
@. @887
@.a4a8
@ DBED8

@.352a1
g.Pe9z9z

plot

: hydro_mesh

2.3

i

a.1
= 1
4 B
(iny

2 @.25 @2.12 @.15 @.2@ @.25 @.3@
Z (cm)

Figure 22: Snapshot 4

30

Linear Solver Comparison

100.000

10.000

1.000

Figure 23: Iteration Counts for Small Symmetric Implosion Problem

1000.000

100.000

10.000

1.000

Figure 24: Iteration Counts for Medium Symmetric Implosion Problem

December 8, 1998

1.000e-03 2.000e-03 3.000e-03 4.000e-03 5.000e-03

oy

1
S T T T O T T T 0

1.000e-03 2.000e-03 3.000e-03 4.000e-03 5.000e-03

Linear Solver Comparison

December 8, 1998

1000.000

100.000 —

10.000

1.000

~

—a——,

B sy g
'51 A
¥,
By

sszinp
—————

Figure 25: Iteration Counts for Large Symmetric Implosion Problem

5.000e-04 1.000e-03

1.500e-03 2.000e-03

1.000e-05

1.000e-06

Figure 26: Time Steps for Medium Symmetric Implosion Problem

1.000e-03 2.000e-03

3.000e-03

4.000e-03 5.000e-03

Linear Solver Comparison December 8, 1998 33

| [DS+CG [ILUT+GMRES [ICT+0G | MG | MG+CG |

Whole Code | 191.52 162.52 173.47 1199.92 | 167.39
Radiation 79.45 58.11 60.62 91.53 63.03
Linear Solve | 34.58 15.36 12.44 45.22 20.85

Table 9: Runtimes for Small Symmetric Implosion Problem (in seconds)

| | DS+CG | ILUT+GMRES | ICT+CG | MG | MG+CG |
Whole Code | 18044.61 9060.15 8289.29 | 14447.06 [9519.38
Radiation | 13397.81 4365.24 3380.86 | 9761.04 | 4662.40
Linear Solve | 11415.53 2301.53 1251.66 | 7754.48 | 2571.45

Table 10: Runtimes for Medium Symmetric Implosion Problem (in seconds)

hydrodynamics looks like a bottleneck to overall code performance at least as far as the
linear solvers are concerned. It should be stressed again, that these calculations were done
for one group and a multigroup calculation would imply a factor of the number of groups
be applied to the CPU time spent in the linear solver. Therefore, a multigroup calculation
with more than 10 groups would in fact show that radiation diffusion in fact dominates the
overall CPU time of the code. The importance therefore, of any speedup of a factor of 2 or
more can mean big savings in CPU time for a multigroup calculation.

5.4 Radiatively Driven Asymmetric Implosion

This problem tests the radiation-hydrodynamics on an ALE mesh in a spherical geometry
with a non-symmetric compression of the DT fuel. Although not particularly realistic (one
would not design a capsule with this much asymmetry), this problem tests the linear solvers
on a mesh which is distorted both in radial and angular directions. Figures 27, 28, 29 and 30
show time snap shots of the pressure in megabars and the mesh. The figures show the initial
300 eV He source, the subsequent ablation of the CH foam, and finally the compression of the
DT ice. Note that the compression does not satisfy spherical symmetry. Figures 31, 32 and
33 show the iteration count as a function of time for all solvers. The DSCG again shows the
most iterations, with the characteristic scaling of iteration count with problem size and time
step. For the small problem, the MG and ILUT4+GMRES show the next highest number of
iterations to convergence followed by MG+CG and ICT+CG. For the medium problem, we

| | DS+CG | ILUT+GMRES [ICT+CG | MG | MG+CG |
Whole Code | 268261.96 | 195932.93 182955.08 | 225516.22 | 199480.29
Radiation | 185486.13 | 100980.08 76225.40 | 128005.89 | 89666.50

Linear Solve | 149820.31 58636.32 29410.26 | 85417.22 | 41950.78

Table 11: Runtimes for Large Symmetric Implosion Problem (in seconds)

Linear Solver Comparison December 8, 1998 34

| [DS+CG [ILUT+GMRES | ICT+CG | MG | MG+CG |

Small Problem 1.00 2.25 2.78 0.76 1.65
Medium Problem 1.00 4.96 9.12 1.47 4.44
Large Problem 1.00 2.56 5.09 1.75 3.57

Table 12: Speedups for Symmetric Implosion Problem

[DS+CG | ILUT+GMRES | ICT+0G | MG | MG+CG |

Whole Code | 311.58 249.89 249.12 251.54 250.62
Radiation 47.63 31.12 30.66 32.37 31.82
Linear Solve 23.68 7.18 5.73 7.51 6.90

Table 13: Runtimes for Small Asymmetric Implosion Problem (in seconds)

see the characteristic weak scaling of ILUT+GMRES and ICT+CG with problem size and
the MG schemes being almost completely independent of problem size. The large problem
iteration count versus time shows the characteristic scalings with time step and problem
size. We see both MG and MG+CG are algorithmically scalable, although the more robuse
MC+CG has smaller iteration counts. Again, we see a limit to the time step growth due
primarily to the Courant condition placed on the hydrodynamics, Figure 34. Tables 13, 14
and 15 show the CPU time spent in the whole code, radiation package, and linear solver.
In addition, the relative speedups compared to DSCG are shown in Table 16. The results
are similar to the radiatively driven symmetric implosion. That is, the results are not quite
as impressive as Kershaw for the same reasons mentioned in §5.3. However, the results are
better than the symmetric implosion on a rectilinear ALE mesh. The reason for this is that
the highly asymmetric nature of the implosion is causing the mesh to distort giving rise to
a matrix with a larger number of corner coupling terms. Note that again it is ICT+CG
beating multigrid, albeit weakly for the small, medium, and large problems.

We repeat the comments of §5.3 for emphasis. These calculations were done for one group
and a multigroup calculation would imply a factor of the number of groups be applied to the
CPU time spent in the linear solver. Therefore, a multigroup calculation with more than 10
groups would in fact show that radiation diffusion in fact dominates the overall CPU time
of the code. The importance therefore, of any speedup of a factor of 2 or more can mean big
savings in CPU time for a multigroup calculation.

‘ ‘ DS+CG ‘ ILUT+GMRES H ICT+CG ‘ MG ‘ MG+CG ‘
Whole Code | 5043.90 4126.60 4532.59 | 4385.09 | 4102.50
Radiation 810.44 324.74 277.17 259.27 283.96
Linear Solve | 600.55 112.16 67.11 52.16 76.76

Table 14: Runtimes for Medium Asymmetric Implosion Problem (in seconds)

Linear Solver Comparison December 8, 1998

Pseudocolor plo
Var: p
Fo levels
.: [a. 3286
7. 4230

— @.3573

— @.3116

| — @.zeE0
— @.zzoz

— @.174E

@. 1288

@. @831

Mas: @. 4456
Min: g.28311
Me
Me

sh plot
sh: hydro_mes

\ 5‘: \ “\' o
mwmﬁwmwmmmwmmmmm

I

Il
-
.
. 4
.
/////////////

i 4?
- %%gﬁ?

2 P.AS A.12 A.15 @.2@ A.25 @.32
£ (cm)
Figure 27: Initial geometry for Asymmetric Implosion Problem

Fseudocolor plot
Yar: p
Fc

levels a.1a
9. 3721
-:EELL,QISSB
—217.79898 2.23
—181.5138
—IUE. 2276
108, 9415 5.0 §

— 72.6EE4
36. 3633
.: @. 2k
@. @831
Mas: Z29@. 4
Min: g.@283211
w.22
Me
Me

=h plot
sh: hydro_mess

Eem):d

@

R

7@.@2—5
—@. P4 3
—IZ.@EE

-0.88

-@.18 -HH‘IHIlIHI‘HII‘IH\‘IHI'HII‘HH‘IIH
2 P.AZ @A.A4 2.8 BA.@38
Z (cm)

[T
@2.1@3

Figure 28: Snapshot 2

Linear Solver Comparison

Fseudocolor plot

Vari p
Pc levels

26@.
lll:éQT,
—195.
—162.
F.rﬂaz.
— a7.

— E5.
32.

@

A8zl
5846
ms71
5880
ASza
2945
Ag7a
5995
1213

Mas: Z6@. 1

Min:

g.1a19

Mesh plot
Mesh: hydro_mesh

(em
=

=

December 8, 1998

HI\‘HH'IIH'HH‘H\I‘IIH‘IHI‘IHI‘\H\‘IH\
a2.@3 @2.1@
Z (cm)

Figure 29: Snapshot 3

Fseudocolor plot

Vari p
Pc levels

£55.
.:223.,
—191.
—159.
F.r427.
- a5,

— 53.
32.

@
Mas:

Z255. 6
Min: @.029603

DEzZ1
5288
BE56
TEE3
8291
[=i=t=]=]
IEZE
MAz235
@sce

Mesh plot
Mesh: hydro_mesh

(em
=

=

HI\‘HH'IIH'HH‘H\I‘IIH‘IHI‘IHI‘\H\‘IH\
a2.@3 @2.1@
Z (cm)

Figure 30: Snapshot 4

36

Linear Solver Comparison December 8, 1998 37

1000.000

100.000

10.000

’
.%
1.000 AU URTOUT RNy Ul . 13 SN S S S N MR

5.000e-04 1.000e-03 1.500e-03

Figure 31: Iteration Counts for Small Asymmetric Implosion Problem

1000.000 T T T T T T

100.000

10.000

1
1.000 S S P R T (5T

5.000e-04 1.000e-08 1.500e-03

Figure 32: Iteration Counts for Medium Asymmetric Implosion Problem

Linear Solver Comparison December 8, 1998

1.000e+03

1.000e+02 |—

1.000e+01 |—

1.000e+00 A TR GRS
1.000e-04 2.000e-04 3.000e-04 4.000e-04 5.000e-04

Figure 33: Iteration Counts for Large Asymmetric Implosion Problem

1.000-04 (TR T T T T

1.000e-05

1.000e-06

1.000e-07

1.000e-08

1.000e-09

1.000e-10

1.000e-11 PSS S VI I S T TS W [S AN S S W W A W I T M|
1.000e-11 1.000e-09 1.000e-07 1.000e-05 1.000e-03

Figure 34: Time Steps for Medium Asymmetric Implosion Problem

Linear Solver Comparison

December 8, 1998

[DS+CG | ILUT+GMRES || ICT+CG | MG | MG+CG |

Whole Code | 445876.04 1165554.15 1150199.61 | 0.0 | 1102108.65
Radiation | 194675.51 174912.03 105895.58 | 0.0 | 75831.09
Linear Solve | 185606.67 122919.69 31889.33 | 0.0 | 23107.11

39

Table 15: Runtimes for Large Asymmetric Implosion Problem (in seconds)

| | DS+CG | ILUT+GMRES | ICT+CG | MG | MG+CG |

Small Problem 1.00 3.30 4.13 3.15 3.43
Medium Problem 1.00 5.35 8.95 11.51 7.82
Large Problem 1.00 1.51 5.82 0.00 8.03

Table 16: Speedup (over DS+CG) for Asymmetric Implosion Problem

6 Conclusions

Computer codes containing both hydrodynamics and radiation play a central role in simulat-
ing both astrophysical and inertial confinement fusion (ICF) phenomena. A crucial aspect
of these codes is that they require an implicit solution of the radiation diffusion equations.
We have shown in this paper the results of a comparison of five different linear solvers (di-
agonally scaled conjugate gradient (DSCG), GMRES with incomplete LU preconditioning
(ILUT+GMRES), conjugate gradient with incomplete Cholesky preconditioning (ICT+CG),
multigrid (SMG), and multigrid-preconditioned conjugate gradient (SMG+CG)) over a range
of complex radiation and radiation-hydrodynamics problems, and over a range of problem
sizes. The importance of scalable linear solvers is clearly manifest when timing comparisons
are performed between DSCG, ILUT+GMRES, ICT+CG and SMG or SMG+CG for pure
radiation flow problems. The large size pure radiation flow problems show a speed-up factor
of ~30 when SMG or SMG+CG is compared to DSCG. The timing differences between the
linear solvers becomes all the more important when multigroup calculations are performed.
For problems involving radiation-hydrodynamic flows, the situation is more complex. The
results of our scalability study clearly show the inadequecies of DSCG as both problem size
and time step grows for these type of problems. However, ICT+CG is comparable and
even slightly better than SMG or SMG+CG. For the large symmetric and non-symmetric
radiatively driven implosions, ICT+CG, SMG, and SMG+CG all show speed-up factor of
~10 compared to DSCG. This observation is tied to several facts. In a multiphysics code
such as the code discussed in this paper, time step controls and mesh relaxation plays an
important role in determining the nature and structure of the matrix. The performance
figures presented here for the linear solvers, are in fact “integral” quantities. What we ob-
serve is a close correlation between time step, the diagonal dominance of the matrix, and the
subsequent iteration count of the linear solver. Since the problems presented in this study
all start at a relatively small time step, DSCG beats all solvers up to a point where DSCG
is taking ~100 iterations to converge. At this point, ILUT+GMRES, ICT+CG, SMG, and
SMG+CG all become cost effective and outperform DSCG. For a large enough time step,

Linear Solver Comparison December 8, 1998 40

SMG and SMG+CG beat all solvers. This is what we observe in the Kershaw and spher-
ical diffusion problem. However, in cases where hydrodynamic flows and time scales are
involved, the code may lower the time step due to converging shocks thus making the matrix
more diagonally dominant and therby making it easier for ILUT4+GMRES or ICT+CG to
solve than either SMG or SMG+CG. This behavior is observed in the implosion problems.
The above discussion leads to the fact that a code with some measure of adaptivity in re-
gards to linear solver choice will run optimally. How and when this choice is to be made
in a radiation-hydrodynamics code is an interesting issue and we leave this topic to future
discussion.

References

[1] R. BARTON, Development of a multimaterial 2d arbitrary lagrangian-eulerian mesh
computer program, in Numerical Astrophysics, L. Centrella and Wheeler, eds., Jones
and Bartlett Publishers, Boston, 1985.

[2] R. BOWERS AND J. WILSON, Numerical Modeling in Applied Physics and Astrophysics,
Jones and Bartlett Publishers, Boston, 1991.

[3] A. BRANDT, Multi-level adaptive solutions to boundary-value problems, Math. Comp.,
31 (1977), pp. 333-390.

[4] W. L. BricaGs, A Multigrid Tutorial, STAM Books, Philadelphia, 1987.

[5] P. N. BRowN, E. CHOW, AND Y. SAAD, ICT: a dual threshold incomplete LDL™
factorization, Tech. Rep. LLNL UCRL Tech Report, Lawrence Livermore National Lab-
oratory, 1998. In preparation.

[6] H. BRYsk, Plasma Physics, 16 (1974).

[7] J. E. DENDY, M. P. IDA, AND J. M. RUTLEDGE, A semicoarsening multigrid algo-
rithm for SIMD machines, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 1460-1469.

[8] C. A. J. FLETCHER, Computational Techniques for Fluid Dynamics, Springer-Verlag,
New York, 1991.

[9] W. HACKBUSCH, Multigrid Methods and Applications, vol. 4 of Computational Math-
ematics, Springer—Verlag, Berlin, 1985.

[10] M. J. HOLST AND S. VANDEWALLE, Schwarz methods: To symmetrize or not to
symmetrize, SIAM J. Numer. Anal., 34 (1997), pp. 699-722.

[11] Y. LEE AND R. MORE, Physics of Fluids, 27 (1984).

[12] W. A. LOKKE AND W. H. GRASBERGER, Xsnq-u, a non-ite emission and absorption
coefficient subroutine, Tech. Rep. UCRL-52276, Lawrence Livermore National Labora-
tory, 1977.

Linear Solver Comparison December 8, 1998 41

[13] D. MIHALAS AND B. WEIBEL-MIHALAS, Foundations of Radiation Hydrodynamics,
Oxford University Press, New York, 1984.

[14] G. C. POMRANING, The Equations of Radiation Hydrodynamics, Pergamon Press, New
York, 1973.

[15] Y. SAAD, lterative Methods for Sparse Linear Systems, PWS Publishing Comapny,
Boston, 1996.

[16] S. SCHAFFER, A semi-coarsening multigrid method for elliptic partial differential equa-
tions with highly discontinuous and anisotropic coefficients, SIAM J. Sci. Stat. Comput.
to appear.

[17] R. A. SmITH AND A. WEISER, Semicoarsening multigrid on a hypercube, STAM J. Sci.
Stat. Comput., 13 (1992), pp. 1314-1329.

[18] R. E. TIpTON. Personal Communication.

[19] P. WESSELING, An Introduction to Multigrid Methods, John Wiley & Sons, Chichester,
1992.

